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This paper considers the simultaneous solution of the matrix
equations AH + HA* = A*H + HA = I where H 1is Hermitian. A full
characterization of A 1in terms of a given H 1is obtained. Various
results are also obtained for those H satisfying the equations with a

given A.

This paper was prepared as a result of work performed under NASA Contract
No. NAS1-14101 while the authors were in residence at ICASE, NASA Langley
Research Center, Hampton, VA 23665.



I. Introduction

We consider the problem of finding those matrices A and Hermitian

matrices H which simultaneously satisfy

AH + HA*

[}
-

and (1)

A*H + HA

[}
o)
L]

This problem was suggested by Taussky [3]. Davis [2] obtained some results
fpr normal or real matrices A. Partial results were also obtained by Barker
[1] who was mostly concerned with ascertaining conditions such that an A
which satisfies (1) is normal. In this work we obtain more general results
which include some.results of Davis and Barker as special cases. In one in-

stance, a result oI parker is proved under a less stringent hypothesis.

We shall find it convenient to consider

(A+A*)H + H(A+A*) = 21 (2)
and

(A-A*)H = H(A-A*) (3)

which are equivalent to (1). Then from either of (1) and (2) it is well
known, e.g. Taussky [4], that A, H and (A+A*) must be nonsingular. Also
(3) obviously states that H and the skew-Hermitian part of A must com~

mute if (1) is to hold.

II. Characterization of A for Given H

Suppose that U 1is a unitary matrix which diagonalizes H, i.e.

UXHU = G = diag(Yl,...,Yn) : (4)

where 1j are the eigenvalues of H. Then define




B = U*(A+A*)U
and (5)
S = U*(A-A*)U
so that (2) and (3) become
BG + GB = 2I (6)
and
SG = GS. (7

For a given matrix H we may completely characterize the matrix A by:
THEOREM 1. Let Yj’ j=1,...,n, be the eigenvalues and U a
unitany diagonalizen o a given Hemitian matriix H. Then the Hermitian

parnt of a matriix A which satisgies (1) 4s gdven by

A+ ax=nlt+ UB, U* (8)

where B, (s a Henmitian matrnix whose entries are zero except when

Yyt yj = 0, 4n which case the (i,j) entry of B, 48 anbitrany. Funthe+-
mone, the skew-Henmitian part of A s given by
A - A* = US, U* 9)

1

where 8, 45 a skew-Heamitian matnix whose diagonal entries are arbitrary

Amaginany numbens and whose (i,j)th entry 48 zero whenever Y4 # Yj and
48 anbithany otherwdise.
Proog: 1f bij is an element of the Hermitian matrix B defined

by (5), then (6) yields




Since H 1is nonsingular, bii = 1/Yi . bij =0 if (Yi+yj) # 0, and

_ . . _ _ 1 .
bij = bji is arbitrary whenever (Yi+yj) = 0., Then B G+ B1 , which

using (4) and (5) results in (8). 1If sij is an element of the skew-

Hermitian matrix S, then (7) can be expressed as
Skﬂ(Yk-Yﬁ) =0 k,£ =1,...,n

so that skk is arbitrary, Skﬂ = 0 whenever Yk # Y2 , and Skl is

arbitrary whenever Yk = YK . Thus, with S1 =8 , (5 results in (9). [ ]
A consequence of Theorem 1 is:
COROLLARY 1.1. 1I§ (Yi+yj) #0 forall i and j and 4§ (1)

hotds, then A and H commute and A 45 normal.

1
(A+A%) = H—1 so that (A+A*) trivially commutes with H. But from (3),

Proof: 1f (Yi+yj) #0 for all i and j , then B, = 0 and

(A-A%*) also‘commutes with H so that A and H commute. Furthermore,
if (A-A*) commutes with H, it also commutes with H_l, so that (A-A%)
commutes with (A+A*) and therefore A is normal. l'
This'corollary was proven by Barker [1] with the additional (and
unnecessary) assumption of Yi # Yj . Furthermore, the proof of the corol-
lary contains the proof of the following theorem, which is also contained
in Barker:
THEOREM 2. 14 (1) holds fon some Hermitian matnix H and L§
(A+A*) and H commute, then A 43 noumal.
Then we also have:
COLLARY 2.1. I§ (1) hotds for some Hermitian matnix H and 4if
A and H commute, then A 45 nowmal. |
Proog: 1f A and H commutg, then so do (A+A%) vand H, so

that by Theorem 2, A 1is normal. ]




III. Characterization of H for Given A

We now seek Hermitian matrices H such that (1) is satisfied for a
given complex matrix A. We first characterize such H wusing the diagonalizer
of the skew-Hermitian part of the given matrix A:
THEOREM 3. Llet V be a unitary diagonalizen of the skew-Hermitian
part of a given matnix A. Let B = VX(A+A*)V. Then 44 the (i,j) element

( + H gdv
by 0f B 48 zeno whenever (b, . b ) #0, given by

-1 e hus (10)

H=V dlag(bll,. on

45 a sofution of (1).

Proog: With H given by (10), (2) can be expressed as

b,.(1/b, +1/b,.) = 26_, i,j =1,...,n (11)
ij ii i3 ij

which is an identity for i =3j . For i # j , (11) becomes

b,,(b,,+b,.) =0
i3t ii j3

which is again an identity due to the hypothesis of the theorem. Further-
more, (3) holds trivially, since under the unitary transformation V,6 H
and (A-A*) are both diagonalized. Since (2) and (3) hold, then so does
1). |
Remark: 1f the eigenvalues of (A-A*) are distinct, then the

hypothesis about the elements of B are necessary for a solution H of
(1) to exist. Furthermore, if spch a solution does exist, it is uniquely
given by (10).

We now consider the case where (A+A*) and -(A+A*) have no common

eigenvalue:




THEOREM 4. Let Bi, i=1,...,n ,be the eigenvalues and W be a
unitary diagonalizen of the Henmitian part of a given matrnix A . Let
S = Wx(A-A*)W . Then if (B, 48,) # 0 forall i and j , (1) has a
solution H only Lf si5 = 0 wheneven Bi # Bj . 1§ this 48 the case,

then H = (A+A*)—1 .

Proog: Let
G = W*HW . (12)
Then (2) can be expressed as
B3 (Bi+6j) = 2Gij i,j = 1,...,n

where gij is an element of G, so that

g.. =1/8

ii i and gij =0, i#3. (13)

Then (3) can be written as

Sij(gi'_gjj) =0 i,j=1,...,n
or from (13)

sij (Bi—Bj) =0 i,j=1,...,n (14)

where s,., 1is an element of S . Therefore either s,, = 0 or B, = B,
ij ij S T
for a solution to exist. Then if (14) is valid for all i and j , (12)
and (13) yield H = (A+A%)™1 |
Another result of Barker follows immediately from this theorem:
COROLLARY 4.1. I (1) holds fon some Herumitian matnix H and 4§
(A+A*) and -(A+A*) have no common eigenvalue, then A A5 normal.
Proo§: By Theorem 4, if (A+A*) and -(A+A*) have no common eigen-

value and (1) holds, then H = (A+A*)_.1 so that trivially (A+A*) and H

~ commute. Then, by Theorem 2, A is normal. - : ]
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